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Abstract: Autophagy is a conservative process of lysosomal digestion of damaged cell organelles, pathogens and 

nonfunctional proteins, which determines the maintenance of cellular balance. This process is an alternative source 

of energy for the cell under stress conditions induced by starvation, chemical factors or hypoxia. In recent years, the 

interest in autophagy has increased, and its dysfunctionality is considered to be one of the factors contributing to 

the development of various disease entities. The likelihood of diseases such as cancer, cardiovascular diseases or 

neurodegenerative diseases increases with age, and the process of autophagy is inhibited in an ageing body, which 

further indicates the involvement of impaired autophagy in the pathogenesis of many diseases. Therefore, activities 

aimed at modifying the pathways related to autophagy are indicated as a potential therapeutic tool. In this review, 

we present selected diseases, the causes of which are believed to be disturbed autophagy, indicate potential 

therapeutic possibilities and emphasise the dichotomous role of autophagy, especially in the neoplastic process. 

Streszczenie: Autofagia jest konserwatywnym procesem polegającym na lizosomalnym trawieniu uszkodzonych 

organelli komórkowych, patogenów i niefunkcjonalnych białek, co warunkuje utrzymanie równowagi komórkowej. 

Proces ten stanowi alternatywne źródło energii dla komórki w warunkach stresowych indukowanych głodzeniem, 

czynnikami chemicznymi czy niedotlenieniem. W ostatnich latach wzrosło zainteresowanie autofagią, a jej 

dysfunkcjonalność uznawana jest za jeden z czynników sprzyjających rozwojowi zróżnicowanych jednostek 

chorobowych. Prawdopodobieństwo występowania chorób, takich jak nowotwory, choroby układu sercowo-

naczyniowego czy choroby neurodegeneracyjne wzrasta wraz z wiekiem, a proces autofagii ulega hamowaniu w 

starzejącym się organizmie, co dodatkowo wskazuje na udział upośledzonej autofagii w patogenezie wielu chorób. 

W związku z tym, działania ukierunkowane na modyfikację szlaków związanych z autofagią wskazywane są jako 

potencjalne narzędzie terapeutyczne. W niniejszym przeglądzie prezentujemy wybrane choroby, których przyczyn 

upatruje się w zaburzonej autofagii, wskazujemy także potencjalne możliwości terapeutyczne oraz podkreślamy 

dychotomiczną rolę autofagii, szczególnie w procesie nowotworzenia. 
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Introduction 

Autophagy is a conservative process occurring in all 

eukaryotic cells: from yeasts, where it was first observed 

and described, to human cells [1, 2]. The name comes 

from Greek and it means “self-eating” [3]. Autophagy 

consists in lysosomal degradation of damaged and 

misfolded proteins, cellular organelles and pathogens 

[2]. In this process, cellular components are separated 

from the cytoplasm, surrounded by a membrane and 

bound in a vesicle called an autophagosome or 

autophagic vacuole [4]. As a result of the fusion between 

an autophagosome and a lysosome, its content is 

degraded by digestive enzymes to amino acids, sugars, 

fatty acids and nucleotides that can be used as 

alternative energy sources for the cell in stress 

conditions or provide building material for the synthesis 

REVIEW ARTICLE 



 

 13 

2022 NR 1 VOL. 100 

of new structures [5, 6]. Autophagy is activated in 

cellular stress conditions that may be induced by 

starvation, chemical stress or hypoxia (insufficient 

oxygen supply) [7]. Autophagy was first described in the 

1960s, and further intensive studies on the process 

brought a Nobel Prize for Yoshinori Ohsumi in 2016 for 

research on the mechanism of autophagy. At present, 

autophagy, a process of cellular self-cleaning, is 

considered a determinant of health and longevity. 

Recently, an increasing number of scientific reports have 

demonstrated the relationships between impaired 

autophagy and various diseases, resulting in growing 

interest in the process itself and the methods of inducing 

it. 

Classification of autophagy 

Previously, three main types of autophagy were 

described: microautophagy, chaperone-mediated 

autophagy and macroautophagy [8]. This classification is 

based on the manner in which the elements intended for 

degradation are delivered to the lysosomes [9]. The 

simplest type of autophagy is microautophagy, which 

involves a direct absorption of the material to be 

digested by the lysozyme. Chaperone-mediated 

autophagy (CMA) is characterised by the presence of a 

specific amino acid sequence (KFERQ, Lys-Phe-Glu-Arg-

Gln) in a substrate molecule [10]. This pentapeptide in 

damaged proteins interacts with chaperone proteins Hsc 

70 (heat shock cognate 70 kDa) and only in the form of 

this complex is delivered to the lysosome, where it binds 

with a LAMP 2A (lysosome associated membrane 

protein type 2A) receptor, to be moved and hydrolysed 

[11]. Macroautophagy is the type of the process most 

frequently defined as autophagy [12]. It essentially 

involves four phases: initiation, elongation of the 

phagophore, maturation of the autophagosome, fusion 

between the autophagosome and lysosome and 

degradation of the content by proteolytic enzymes [11]. 

Autophagy is controlled antagonistically by AMPK 

(AMP-activated protein kinase) and mTOR (mammalian 

target of rapamycin), which act as cellular indicators of 

nutrients [13]. Ulk1 phosphorylation by AMPK activates 

autophagy, while mTOR inhibits the process [14]. The 

entire process is controlled by specific Atg proteins [15]. 

The key factors in the initiation of autophagy and 

creation of autophagosomes are beclin 1 (a homologue 

of the yeast Atg 6 protein) and PI3K class III 

(phosphoinositide 3-kinase class III). In subsequent 

phases, beclin 1 activates other Atg proteins, resulting in 

elongation of the vesicle [14]. One of the more  

important stages of autophagy is conversion of cytosolic 

LC-3 (LC3-l; microtubule-associated protein 1 light chain 

3) to a form conjugated with the inner membrane of the 

autophagic vesicle, LC3-II, which is considered the 

principal marker of autophagy [14, 16]. 

Diseases associated with impaired autophagy 

All diseases associated with impaired autophagy share a 

common characteristic: accumulation of damaged 

cellular organelle and/or dysfunctional proteins, which 

disturbs cellular homeostasis. These elements may 

accumulate as a consequence of impaired final phases of 

autophagy, observed in microscopic images as an 

accumulation of the structures specific for this process: 

autophagic vacuoles (AV),  inclusion bodies (IB) or multi-

vesicular bodies (MVB) [17, 18]. Progress in the research 

on autophagy was supported by genome-wide 

association studies (GWAS), which allowed for 

identification of genes associated with autophagy [19]. In 

recent years, an increasing number of diseases 

associated with autophagic dysfunction has been found. 

They include among others inflammatory bowel 

diseases, cardiovascular diseases, neurodegenerative 

conditions, diabetes, obesity and neoplasms [1, 20]. 

Inflammatory bowel diseases 

Inflammatory bowel diseases (IBD) are chronic 

gastrointestinal conditions characterised by periods of 

exacerbation and remission [21]. The most common 

non-specific inflammatory bowel diseases are Crohn’s 

disease (CD) and ulcerative colitis (UC) [22]. CD presents 

as non-specific inflammation of the gastrointestinal wall 

and may affect any section of the digestive tract[11], 

while UC affects the final fragment of the digestive tract 

[23]. Sometimes, when the inflammation affects the 

colon, differentiation and diagnosis is impossible; in such 

cases we talk about  unclassified colitis (IBDU) [11]. 

Aetiology of inflammatory bowel diseases is varied, but 

the most commonly identified causes include 

environmental and genetic factors, impaired autophagy 

and dysbiosis [11, 24]. The development of GWAS 

contributed to the progress in IBD diagnostics. The 

genes associated with autophagy, whose mutations 

contribute to IBD, include ATG16L, IRGM and LRRK2 

[25]. Atg 16L protein plays a crucial role in the process 

of autophagy, as it participates in the creation of 

autophagosomes [26]. The best known modification 

associated with dysfunctional autophagy in the course 

of IBD is  a single nucleotide polymorphism (SNP) in 

which threonine is substituted for alanine at position 

300 (T300A), which doubles the risk of CD [27, 28]. This 

mutation disturbs the activity of Paneth cells and goblet 

cells, resulting in impaired autophagy dedicated to 

pathogen elimination, known as xenophagy [29, 30]. 

Apart from disturbed pathogen elimination, mutation in 

the ATG16L gene increase the secretion of 

proinflammatory cytokines by Paneth cells, and increase 

the secretion of interleukin-1β (Il-1β), interleukin-18 (IL-

18) and reactive oxygen species (ROS) by macrophages 

due to the activity of lipopolysaccharide (LPS) [31]. 

Therefore, ATG16L mutations contribute to exacerbated 

inflammation. Another gene related to autophagy and 

the development of IBD is IRGM which codes the M 

protein (immunity-related GTPase family M protein, 

IRGM) [32]. This protein is responsible for the 

maturation of autophagosomes and participates in 
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pathogen elimination from mammalian cells. Previous 

studies demonstrated inconsistent results regarding the 

relationship between polymorphisms of this gene and 

CD phenotype [33, 34]. However, a correlation was 

found between mutations in the IRGM gene and 

incidence of UC [34]. Regarding the next gene, LRRK2 

(leucine-rich repeat kinase 2), it has been demonstrated 

that its polymorphism is related to the occurrence of CD 

[35]. An increased expression of this gene was observed 

in patients diagnosed with CD [36]. Interestingly, 

compared to other genes associated with autophagy, the 

expression of LRRK2 is observed in the leukocytes 

present in the lamina propria, not in the intestinal 

epithelial cells [37]. 

Cardiovascular diseases 

The continuity of the cardiac function is maintained by 

the energy (ATP) synthesised in mitochondria. A 

selective type of autophagy, involving degradation of 

these structure, is known as mitophagy, and its 

impairment is associated with various disorders of the 

heart muscle function [38, 39]. A particular role of 

autophagy was found in heart failure, proteinopathy, 

ischaemia and reperfusion, in which proteins are 

damaged due to oxidative stress [14, 40]. Studies on 

mice revealed that deficits of the Atg 5 protein 

contribute to the accumulation of polyubiquitinated 

proteins, mitochondria, increased endoplasmic 

reticulum stress, changes in the structure of the 

sarcomere and apoptosis of the cardiomyocytes [39]. 

Accumulation of the p62/SQSTM1 protein and 

polyubiquitinated proteins have been correlated with 

atherosclerosis, and the findings were based on murine 

models, as well as on studies involving patients 

diagnosed with atherosclerosis [41]. Another study 

demonstrated a relationship between 

autophagy/mitophagy and heart failure or aortic 

stenosis. Initially, the processes were activated, but due 

to reduced effectiveness of mitochondrial function and 

progressive heart failure, they were inhibited [42]. A 

therapeutic role of autophagy in various cardiovascular 

diseases has also been established. For instance, 

cardiomyocyte hypertrophy in the course of cardiac 

hypertrophy was reduced following treatment with 

sophoricoside that activated the AMPK/mTORC1 

pathway, inducing the autophagy process [43]. Another 

example is the use of metformin which, by blocking the 

pathway activating autophagy  regulated by AMP-

activated protein kinase, reduced the development of 

heart failure [44]. 

Neurodegenerative diseases 

Probability of neurodegenerative diseases increases 

with age, due to changes such as oxidative stress, 

mitochondrial damage, energy deficits, hyperactivation 

of glutamate receptors and disturbed homeostasis [45]. 

The majority of neurodegenerative diseases is due to 

accumulation of specific proteins, characteristic for a 

particular disorder [46, 47]. This accumulation is caused 

by the impairment of the processes of protein 

degradation that progresses with age, including 

autophagy [48]. Protein accumulation may lead to 

disturbed transmission of neural impulses between 

synapses, and even to the death of nerve cells [46, 47]. 

The most frequently observed neurodegenerative 

diseases include Alzheimer’s disease (AD) and 

Parkinson’s disease (PD). In their course, accumulation 

of autophagosomes and damaged proteins is observed 

[49]. Alzheimer’s disease involves a progressive loss of 

synapses in the cerebral cortex and in the hippocampus, 

resulting in memory disorders and impairment of the 

cognitive functions [50]. The aetiology of this condition 

is not fully understood. The most common explanations 

point to the accumulation amyloid-β (Aβ) and tau protein 

[51, 52]. Amyloid-β accumulates in the form of  amyloid 

plaques, while tau builds up in the form of intraneural 

aggregates, creating neurofibrillary tangles [53]. 

Impaired autophagy is indicated as the principal cause of 

aggregation of these structures; therefore, strategies to 

activate autophagy are being explored as a therapeutic 

option in the treatment of Alzheimer’s disease [54]. For 

instance, it has been demonstrated that using rapamycin 

(mTOR kinase inhibitor, activator of autophagy) blocked 

the aggregation of amyloid-β and tau protein, and 

improved cognitive functions; however, this effect was 

only observed in early stages of the disease [55, 56]. 

Parkinson’s disease is caused by the accumulation of α-

synuclein and degeneration of dopaminergic neurons 

[57]. The main symptoms include impaired motor 

function, sleep disorders, mood swings and reduced 

cognitive function [58]. Although the mechanisms 

behind the disease are not fully understood, GWAS 

made it possible to identify numerous genes associated 

with impaired autophagy and development of 

Parkinson’s disease [59]. 

Diabetes 

Diabetes, despite the differences between type I and 

type II, is characterised by a lack of glucose homeostasis, 

due to insufficiency of pancreatic β-cells [60]. 

Simplifying, the pancreas produces less insulin, which 

causes hyperglycaemia. The impaired function of β-cells 

is due to endoplasmic reticulum stress and oxidative 

stress [61]. Autophagy plays a key role in the function of 

pancreatic β-cells [62]. The correlation between 

inhibited autophagy and impaired β-cell function was 

demonstrated in a study using Atg7 knockout mice [63]. 

Reduced insulin secretion and impaired glucose 

tolerance were observed in the cells of the knockout 

mice, which clearly points to the role of dysfunctional 

autophagy in the pathogenesis of diabetes. Another 

study, using obese diabetic mice, demonstrated impaired 

autophagy and death of pancreatic β-cells [64]. 

Following intermittent fasting, autophagy was activated 

and the course of obesity-induced diabetes was milder. 

Demonstration of the relationship between inhibited 
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autophagy and diabetes led to the development of 

methods aimed at induction of autophagy in the 

treatment of diabetes. One of effective methods of 

controlling the course of diabetes is diet modification. It 

was demonstrated that  the fast-mimicking diet (FMD) 

supports regeneration of pancreatic β-cells in the murine 

model of type I and type II diabetes [65]. Highly effective 

in the treatment of diabetes is e.g. metformin, an insulin-

mimetic agent. It was demonstrated to activate 

autophagy in β-cells and to inhibit apoptosis under 

lipotoxicity in an in vitro model [66]. What is interesting, 

in relation to diabetes, a varied effect of rapamycin was 

observed. On the one hand, it was demonstrated that 

this autophagy activator helps to reduce body weight 

growth and blood glucose levels in rodents receiving a 

high-fat diet [67, 68]; on the other hand, increased 

insulin resistance and impaired pancreatic function were 

observed, even when autophagy was activated [69]. 

Obesity 

Obesity and its consequences, i.e. increased risk of 

diabetes, arterial hypertension, cardiovascular diseases 

and neoplasms, are a global problem [70]. Excessive fat 

content localised outside of the fatty tissue, e.g. in 

hepatic cells or skeletal muscles, may injure these tissues 

or induce systemic lipotoxicity due to a high 

concentration of free fatty acids in the blood serum [71, 

72]. One of the factors activating autophagy is hunger, 

so excessive caloric intake, characteristic for the diet of 

obese patients, impairs this process. Studies 

demonstrated that excessive caloric intake may 

contribute to the inhibition of autophagy due to 

stimulation of its negative regulator, mTOR kinase [73]. 

Studies on mice demonstrated that in obese mice, 

autophagy is inhibited due to reduced expression of the 

genes related to autophagy: ATG5 and ATG7 [74]. On 

the other hand, there are numerous scientific reports 

demonstrating the accumulation of autophagosomes in 

the liver and adipocytes of obese mice and humans, 

which potentially points to the activation of autophagy 

[75]. Obesity is indicated as one of the factors inducing 

endoplasmic reticulum stress in the liver, and ER stress 

activates autophagy. Therefore, it is possible that 

autophagy is induced to restore the homeostasis 

disturbed by excessive body weight [74, 76]. However, 

effective autophagy should result in elimination of 

autophagic substrates, such as lipid droplets and protein 

aggregates, while many studies reveal accumulation of 

these elements in cells and tissues [75, 77]. Increased 

production and accumulation of autophagosomes points 

to the activation of autophagy, but also to its reduced 

efficiency [78]. The unclear problem of autophagy in the 

adipose tissue was addressed in studies on the function 

of lysosomes and proteases using in vitro and in vivo 

models [79]. The authors demonstrated that in the 

pathological adipose tissue, production of 

autophagosomes was accelerated, but at further stages 

the autophagic flow was inhibited, which resulted in 

accumulation of autophagosomes.  The obtained results 

suggest an ineffective autophagy process in the adipose 

tissue. 

Neoplasms 

In the context of neoplasms, autophagy arouses the 

greatest controversy. On the one hand, it is a crucial 

process in cell growth and neoplastic transformation; on 

the other hand, it contributes to the death of neoplastic 

cells [80]. First reports regarding the role of autophagy 

in the neoplastic process date back to 1999, when the 

activity of beclin 1 was demonstrated to suppress 

tumour growth [81]. Studies revealed that deletion of 

the beclin1-coding gene was correlated with the 

development of neoplasms in the breasts, ovaries and 

prostate, while reduced expression of the gene was 

observed in neoplasms of the breasts, ovaries and brain 

[81, 82, 83]. Research demonstrated that mutation in the 

beclin-coding gene inhibited autophagy and increased 

susceptibility to neoplasms [84, 85]. Other studies 

showed that p62 protein  (a selective autophagy protein) 

participated in the control of the neoplastic process [86]. 

In the murine model, aggregation of p62 was found to 

impair autophagy. Unclear is the role of autophagy in the 

development of colonic neoplasms. On the one hand, it 

was demonstrated that in advanced stages of the 

tumour, LC3-II (autophagy marker) is overexpressed, 

which indicates high activity of the process [86], but 

other studies showed reduced expression of ATG 5, a 

gene that activates autophagy [87]. A study on 

pancreatic tumours revealed that increased autophagy 

supports the development of cancer cells, not only 

providing the energy necessary for the progression of 

the neoplastic process, but also supplying substrates, 

such as proteins, nucleic acids and lipids that make 

increasing the biomass of the neoplastic cells possible 

[88]. It appears that the role of autophagy in the 

neoplastic process is determined by the stage of the 

disease. Initially, autophagy degrades the damaged 

organelle and proteins, preventing the development of a 

neoplasm, but in advanced stages autophagy enables the 

tumour to adapt to adverse conditions, such as hypoxia, 

and allows the disease to progress [89, 90]. 

Methods of autophagy activating  

Effective autophagy is considered a determinant of good 

health. Elimination of the damaged cellular organelle and 

dysfunctional proteins supports homeostasis and 

prevents diseases, which helps also to delay the ageing 

process. General systemic effects promoting longevity 

were proven in mice, worms and flies [91], but in recent 

years there has been growing interest in methods of 

activating this process also in humans. One of the factors 

inducing autophagy is fasting stress, so various dietary 

models based on caloric restrictions are gaining 

popularity. Proautophagic effects of energy deficits 

consists in antagonistic activity of AMPK/mTOR, the 

cellular sensors of the availability of nutrients [13]. For 
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autophagy to be activated, the glycogen stored in the 

liver and muscles must be used, so the time necessary to 

induce the process is considered 72 hours [92]. 

However, three-day fasting is too challenging for 

consumers, so different fast-imitating nutritional models 

have been developed [93]. The most popular protocol is  

intermittent fasting (IF), involving periods of fasting and 

so called “eating windows”. The most common IF 

schedule comprises 16 hours of fasting followed by an 

8-hour period when eating is allowed [94]. Other 

nutritional strategies based on alternating fasting and 

eating include ADF (alternate days fasting), FMD (fast-

mimicking diet), and TRD (time restriction diet) [95, 96]. 

An example of dietary activation of autophagy can be 

obtained by ketogenic diet (KD), in which daily 

carbohydrate intake is limited to approximately 5–10% 

of the total caloric intake or if their amount is less than 

50 g a day [97]. With glucose deficits, fats are 

metabolised, resulting in ketosis, in which the main 

sources of energy are ketone bodies, used by the 

organism also during fasting [96]. The relationship 

between ketogenic diet and induction of autophagy was 

demonstrated e.g. in a study on mice in which an 

increased expression of LC3-II and beclin 1 was 

observed in animals on a high-fat diet, indicating that 

autophagy had been activated [98]. Due to the growing 

interest in autophagy, biologically active substances that 

can affect the process have been identified. They 

include among others curcumin and resveratrol. The role 

of curcumin in the activation of autophagic pathways 

was demonstrated e.g. in studies on human colon cancer 

cells (HCT116) and mouse embryonic fibroblasts (MEF) 

[99]. Resveratrol was shown to contribute to the 

degradation of amyloid plaques in mice, demonstrating 

a potentially therapeutic effect in Alzheimer’s disease 

[100]. Physical activity also appears to stimulate 

autophagy. There are reports from studies assessing the 

effect of endurance training on the activation of 

autophagy in mice, depending on whether the training 

animals were fasting or after a meal. Based on the 

increased levels of autophagy markers, the study 

revealed that autophagy was activated in both cases. It 

should be emphasised that autophagy was more marked 

in the animals that were training in a fasted state [101]. 

Conclusion 

Growing interest in autophagy in recent years results 

from its role in aetiopathogenesis of a broad spectrum 

of diseases, including among others inflammatory bowel 

diseases, cardiovascular diseases, neurodegenerative 

diseases, diabetes, obesity or neoplasms. Autophagy, as 

a process of cellular self-cleaning and recycling, 

maintains homeostasis in the organism, and elimination 

of harmful or defective components, such as pathogens 

and dysfunctional proteins, ensures normal function of 

cells and tissues. It reduces the risk of diseases 

associated with ageing. Since autophagy decreases with 

age, methods of activating the process are sought. 

Autophagy itself is considered to be a process that 

inhibits ageing and promotes longevity. The behavioural 

methods of inducing autophagy include nutritional 

restriction, such as reduction of the caloric intake, 

intermittent fasting and reduced carbohydrate supply. 

Autophagy is also promoted by physical activity, as well 

as by certain groups of products rich in biologically 

active compounds, such as curcumin and resveratrol. 

Although autophagy is believed to have a range of 

health-promoting properties, it should be emphasised 

that the process is dichotomous; therefore, both its 

impairment and excessive activation have an adverse 

impact on health. 
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